Source code for torchio.transforms.preprocessing.intensity.rescale

import warnings
from typing import Optional

import numpy as np
import torch

from ....data.image import Image
from ....data.subject import Subject
from ....typing import TypeDoubleFloat
from .normalization_transform import NormalizationTransform
from .normalization_transform import TypeMaskingMethod


[docs] class RescaleIntensity(NormalizationTransform): """Rescale intensity values to a certain range. Args: out_min_max: Range :math:`(n_{min}, n_{max})` of output intensities. If only one value :math:`d` is provided, :math:`(n_{min}, n_{max}) = (-d, d)`. percentiles: Percentile values of the input image that will be mapped to :math:`(n_{min}, n_{max})`. They can be used for contrast stretching, as in `this scikit-image example`_. For example, Isensee et al. use ``(0.5, 99.5)`` in their `nn-UNet paper`_. If only one value :math:`d` is provided, :math:`(n_{min}, n_{max}) = (0, d)`. masking_method: See :class:`~torchio.transforms.preprocessing.intensity.NormalizationTransform`. in_min_max: Range :math:`(m_{min}, m_{max})` of input intensities that will be mapped to :math:`(n_{min}, n_{max})`. If ``None``, the minimum and maximum input intensities will be used. **kwargs: See :class:`~torchio.transforms.Transform` for additional keyword arguments. Example: >>> import torchio as tio >>> ct = tio.ScalarImage('ct_scan.nii.gz') >>> ct_air, ct_bone = -1000, 1000 >>> rescale = tio.RescaleIntensity( ... out_min_max=(-1, 1), in_min_max=(ct_air, ct_bone)) >>> ct_normalized = rescale(ct) .. _this scikit-image example: https://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_equalize.html#sphx-glr-auto-examples-color-exposure-plot-equalize-py .. _nn-UNet paper: https://arxiv.org/abs/1809.10486 """ def __init__( self, out_min_max: TypeDoubleFloat = (0, 1), percentiles: TypeDoubleFloat = (0, 100), masking_method: TypeMaskingMethod = None, in_min_max: Optional[TypeDoubleFloat] = None, **kwargs, ): super().__init__(masking_method=masking_method, **kwargs) self.out_min_max = out_min_max self.in_min_max = in_min_max self.out_min, self.out_max = self._parse_range( out_min_max, 'out_min_max', ) self.percentiles = self._parse_range( percentiles, 'percentiles', min_constraint=0, max_constraint=100, ) if self.in_min_max is not None: self.in_min_max = self._parse_range( self.in_min_max, 'in_min_max', ) self.args_names = [ 'out_min_max', 'percentiles', 'masking_method', 'in_min_max', ] def apply_normalization( self, subject: Subject, image_name: str, mask: torch.Tensor, ) -> None: image: Image = subject[image_name] image.set_data(self.rescale(image.data, mask, image_name)) def rescale( self, tensor: torch.Tensor, mask: torch.Tensor, image_name: str, ) -> torch.Tensor: # The tensor is cloned as in-place operations will be used array = tensor.clone().float().numpy() mask_array = mask.numpy() if not mask_array.any(): message = ( f'Rescaling image "{image_name}" not possible' ' because the mask to compute the statistics is empty' ) warnings.warn(message, RuntimeWarning, stacklevel=2) return tensor values = array[mask_array] cutoff = np.percentile(values, self.percentiles) np.clip(array, *cutoff, out=array) # type: ignore[call-overload] if self.in_min_max is None: in_min, in_max = array.min(), array.max() else: in_min, in_max = self.in_min_max in_range = in_max - in_min if in_range == 0: # should this be compared using a tolerance? message = ( f'Rescaling image "{image_name}" not possible' ' because all the intensity values are the same' ) warnings.warn(message, RuntimeWarning, stacklevel=2) return tensor out_range = self.out_max - self.out_min array -= in_min array /= in_range array *= out_range array += self.out_min return torch.as_tensor(array)