Source code for

from __future__ import annotations

import copy
import pprint
from typing import Any
from typing import Callable
from typing import Dict
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import TYPE_CHECKING

import numpy as np

from ..constants import INTENSITY
from ..constants import TYPE
from ..utils import get_subclasses
from .image import Image

    from ..transforms import Transform, Compose

[docs] class Subject(dict): """Class to store information about the images corresponding to a subject. Args: *args: If provided, a dictionary of items. **kwargs: Items that will be added to the subject sample. Example: >>> import torchio as tio >>> # One way: >>> subject = tio.Subject( ... one_image=tio.ScalarImage('path_to_image.nii.gz'), ... a_segmentation=tio.LabelMap('path_to_seg.nii.gz'), ... age=45, ... name='John Doe', ... hospital='Hospital Juan Negrín', ... ) >>> # If you want to create the mapping before, or have spaces in the keys: >>> subject_dict = { ... 'one image': tio.ScalarImage('path_to_image.nii.gz'), ... 'a segmentation': tio.LabelMap('path_to_seg.nii.gz'), ... 'age': 45, ... 'name': 'John Doe', ... 'hospital': 'Hospital Juan Negrín', ... } >>> subject = tio.Subject(subject_dict) """ # noqa: B950 def __init__(self, *args, **kwargs: Dict[str, Any]): if args: if len(args) == 1 and isinstance(args[0], dict): kwargs.update(args[0]) else: message = 'Only one dictionary as positional argument is allowed' raise ValueError(message) super().__init__(**kwargs) self._parse_images(self.get_images(intensity_only=False)) self.update_attributes() # this allows me to do e.g. subject.t1 self.applied_transforms: List[Tuple[str, dict]] = [] def __repr__(self): num_images = len(self.get_images(intensity_only=False)) string = ( f'{self.__class__.__name__}' f'(Keys: {tuple(self.keys())}; images: {num_images})' ) return string def __copy__(self): return _subject_copy_helper(self, type(self)) def __len__(self): return len(self.get_images(intensity_only=False)) @staticmethod def _parse_images(images: List[Image]) -> None: # Check that it's not empty if not images: raise TypeError('A subject without images cannot be created') @property def shape(self): """Return shape of first image in subject. Consistency of shapes across images in the subject is checked first. Example: >>> import torchio as tio >>> colin = tio.datasets.Colin27() >>> colin.shape (1, 181, 217, 181) """ self.check_consistent_attribute('shape') return self.get_first_image().shape @property def spatial_shape(self): """Return spatial shape of first image in subject. Consistency of spatial shapes across images in the subject is checked first. Example: >>> import torchio as tio >>> colin = tio.datasets.Colin27() >>> colin.spatial_shape (181, 217, 181) """ self.check_consistent_spatial_shape() return self.get_first_image().spatial_shape @property def spacing(self): """Return spacing of first image in subject. Consistency of spacings across images in the subject is checked first. Example: >>> import torchio as tio >>> colin = tio.datasets.Slicer() >>> colin.spacing (1.0, 1.0, 1.2999954223632812) """ self.check_consistent_attribute('spacing') return self.get_first_image().spacing @property def history(self): # Kept for backwards compatibility return self.get_applied_transforms() def is_2d(self): return all(i.is_2d() for i in self.get_images(intensity_only=False)) def get_applied_transforms( self, ignore_intensity: bool = False, image_interpolation: Optional[str] = None, ) -> List[Transform]: from ..transforms.transform import Transform from ..transforms.intensity_transform import IntensityTransform name_to_transform = {cls.__name__: cls for cls in get_subclasses(Transform)} transforms_list = [] for transform_name, arguments in self.applied_transforms: transform = name_to_transform[transform_name](**arguments) if ignore_intensity and isinstance(transform, IntensityTransform): continue resamples = hasattr(transform, 'image_interpolation') if resamples and image_interpolation is not None: parsed = transform.parse_interpolation(image_interpolation) transform.image_interpolation = parsed transforms_list.append(transform) return transforms_list def get_composed_history( self, ignore_intensity: bool = False, image_interpolation: Optional[str] = None, ) -> Compose: from ..transforms.augmentation.composition import Compose transforms = self.get_applied_transforms( ignore_intensity=ignore_intensity, image_interpolation=image_interpolation, ) return Compose(transforms)
[docs] def get_inverse_transform( self, warn: bool = True, ignore_intensity: bool = False, image_interpolation: Optional[str] = None, ) -> Compose: """Get a reversed list of the inverses of the applied transforms. Args: warn: Issue a warning if some transforms are not invertible. ignore_intensity: If ``True``, all instances of :class:`~torchio.transforms.intensity_transform.IntensityTransform` will be ignored. image_interpolation: Modify interpolation for scalar images inside transforms that perform resampling. """ history_transform = self.get_composed_history( ignore_intensity=ignore_intensity, image_interpolation=image_interpolation, ) inverse_transform = history_transform.inverse(warn=warn) return inverse_transform
[docs] def apply_inverse_transform(self, **kwargs) -> Subject: """Apply the inverse of all applied transforms, in reverse order. Args: **kwargs: Keyword arguments passed on to :meth:``. """ inverse_transform = self.get_inverse_transform(**kwargs) transformed: Subject transformed = inverse_transform(self) # type: ignore[assignment] transformed.clear_history() return transformed
def clear_history(self) -> None: self.applied_transforms = []
[docs] def check_consistent_attribute( self, attribute: str, relative_tolerance: float = 1e-6, absolute_tolerance: float = 1e-6, message: Optional[str] = None, ) -> None: r"""Check for consistency of an attribute across all images. Args: attribute: Name of the image attribute to check relative_tolerance: Relative tolerance for :func:`numpy.allclose()` absolute_tolerance: Absolute tolerance for :func:`numpy.allclose()` Example: >>> import numpy as np >>> import torch >>> import torchio as tio >>> scalars = torch.randn(1, 512, 512, 100) >>> mask = torch.tensor(scalars > 0).type(torch.int16) >>> af1 = np.eye([0.8, 0.8, 2.50000000000001, 1]) >>> af2 = np.eye([0.8, 0.8, 2.49999999999999, 1]) # small difference here (e.g. due to different reader) >>> subject = tio.Subject( ... image = tio.ScalarImage(tensor=scalars, affine=af1), ... mask = tio.LabelMap(tensor=mask, affine=af2) ... ) >>> subject.check_consistent_attribute('spacing') # no error as tolerances are > 0 .. note:: To check that all values for a specific attribute are close between all images in the subject, :func:`numpy.allclose()` is used. This function returns ``True`` if :math:`|a_i - b_i| \leq t_{abs} + t_{rel} * |b_i|`, where :math:`a_i` and :math:`b_i` are the :math:`i`-th element of the same attribute of two images being compared, :math:`t_{abs}` is the ``absolute_tolerance`` and :math:`t_{rel}` is the ``relative_tolerance``. """ # noqa: B950 message = ( f'More than one value for "{attribute}" found in subject images:\n{{}}' ) names_images = self.get_images_dict(intensity_only=False).items() try: first_attribute = None first_image = None for image_name, image in names_images: if first_attribute is None: first_attribute = getattr(image, attribute) first_image = image_name continue current_attribute = getattr(image, attribute) all_close = np.allclose( current_attribute, first_attribute, rtol=relative_tolerance, atol=absolute_tolerance, ) if not all_close: message = message.format( pprint.pformat( { first_image: first_attribute, image_name: current_attribute, } ), ) raise RuntimeError(message) except TypeError: # fallback for non-numeric values values_dict = {} for image_name, image in names_images: values_dict[image_name] = getattr(image, attribute) num_unique_values = len(set(values_dict.values())) if num_unique_values > 1: message = message.format(pprint.pformat(values_dict)) raise RuntimeError(message) from None
def check_consistent_spatial_shape(self) -> None: self.check_consistent_attribute('spatial_shape') def check_consistent_orientation(self) -> None: self.check_consistent_attribute('orientation') def check_consistent_affine(self) -> None: self.check_consistent_attribute('affine') def check_consistent_space(self) -> None: try: self.check_consistent_attribute('spacing') self.check_consistent_attribute('direction') self.check_consistent_attribute('origin') self.check_consistent_spatial_shape() except RuntimeError as e: message = ( 'As described above, some images in the subject are not in the' ' same space. You probably can use the transforms ToCanonical' ' and Resample to fix this, as explained at' '' # noqa: B950 ) raise RuntimeError(message) from e def get_images_names(self) -> List[str]: return list(self.get_images_dict(intensity_only=False).keys()) def get_images_dict( self, intensity_only=True, include: Optional[Sequence[str]] = None, exclude: Optional[Sequence[str]] = None, ) -> Dict[str, Image]: images = {} for image_name, image in self.items(): if not isinstance(image, Image): continue if intensity_only and not image[TYPE] == INTENSITY: continue if include is not None and image_name not in include: continue if exclude is not None and image_name in exclude: continue images[image_name] = image return images def get_images( self, intensity_only=True, include: Optional[Sequence[str]] = None, exclude: Optional[Sequence[str]] = None, ) -> List[Image]: images_dict = self.get_images_dict( intensity_only=intensity_only, include=include, exclude=exclude, ) return list(images_dict.values()) def get_first_image(self) -> Image: return self.get_images(intensity_only=False)[0] def add_transform( self, transform: Transform, parameters_dict: dict, ) -> None: self.applied_transforms.append((, parameters_dict))
[docs] def load(self) -> None: """Load images in subject on RAM.""" for image in self.get_images(intensity_only=False): image.load()
[docs] def unload(self) -> None: """Unload images in subject.""" for image in self.get_images(intensity_only=False): image.unload()
def update_attributes(self) -> None: # This allows to get images using attribute notation, e.g. subject.t1 self.__dict__.update(self) @staticmethod def _check_image_name(image_name): if not isinstance(image_name, str): message = ( f'The image name must be a string, but it has type "{type(image_name)}"' ) raise ValueError(message) return image_name
[docs] def add_image(self, image: Image, image_name: str) -> None: """Add an image to the subject instance.""" if not isinstance(image, Image): message = ( 'Image must be an instance of torchio.Image,' f' but its type is "{type(image)}"' ) raise ValueError(message) self._check_image_name(image_name) self[image_name] = image self.update_attributes()
[docs] def remove_image(self, image_name: str) -> None: """Remove an image from the subject instance.""" self._check_image_name(image_name) del self[image_name] delattr(self, image_name)
[docs] def plot(self, **kwargs) -> None: """Plot images using matplotlib. Args: **kwargs: Keyword arguments that will be passed on to :meth:`~torchio.Image.plot`. """ from ..visualization import plot_subject # avoid circular import plot_subject(self, **kwargs)
def _subject_copy_helper( old_obj: Subject, new_subj_cls: Callable[[Dict[str, Any]], Subject], ): result_dict = {} for key, value in old_obj.items(): if isinstance(value, Image): value = copy.copy(value) else: value = copy.deepcopy(value) result_dict[key] = value new = new_subj_cls(result_dict) new.applied_transforms = old_obj.applied_transforms[:] return new class _RawSubjectCopySubject(Subject): def __copy__(self): return _subject_copy_helper(self, Subject)